

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

BREVET DE TECHNICIEN SUPÉRIEUR DIÉTÉTIQUE SESSION 2006

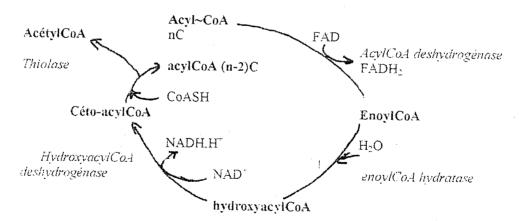
ÉPREUVE BIOCHIMIE PHYSIOLOGIE

Durée : 3 heures Coefficient : 2

L'USAGE DE LA CALCULATRICE N'EST PAS AUTORISÉ

ASPECTS DU MÉTABOLISME HÉPATIQUE

- 1. Anatomie et histologie (5 points = 0,25 par légende + 1 pt pour le sens des liquides) Schéma 1 :
 - 1 Artère hépatique
 - 2 Veine porte hépatique
 - 3 Lobes du foie
 - 4 Veine cave inférieure
- Schéma 2
 - 1 Canalicule biliaire
 - 2 Canal biliaire/ canalicule biliaire interlobulaire
 - 3 Veinule porte
 - 4 Artériole hépatique


- 5 Vésicule biliaire
- 6 Canal hépatique
- 7 Canal cystique
- 8 Canal cholédoque
- 5 (Canal et vaisseaux de) l'espace porte
- 6 Hépatocytes
- 7 Veine centrolobulaire (veinule sushépatique)
- 8 Capillaires sinusoïdes

2. Le foie et les acides gras

2.1. ß oxydation (3 pts)

Localisation: matrice mitochondriale

Réactions en jeu :

2.2. (1 pt) Devenir principal des acétyl CoA : oxydation complète dans le cycle de Krebs + chaîne respiratoire.

Important pour la synthèse du cholestérol et des stéroïdes.

2.3. (3 pts) Formule de l'acide palmitique : C 16 : 0 CH₃ – (CH₂)₁₄ – COOH Bilan énergétique de l'oxydation complète d'une molécule d'acide palmitique 7 tours de ß oxydation à partir de palmityCoA produisent

8 acétylCoA

7 NADH,H

7 FADH₂

soit 31 NADH,H⁺

Cycle de Krebs: 1 acétylCoA donne

3 NADH.H⁺ 1 FADH₂ 15 FADH₂ 8 GTP

1 GTP

La réoxydation des coenzymes réduits dans la chaîne respiratoire permet la synthèse d'ATP par l'ATP synthase dans un couplage énergétique :

Pour NADH,H⁺ l'énergie libérée dans le transfert d'e permet la synthèse de 3 ATP Pour FADH₂ l'énergie libérée dans le transfert d'e permet la synthèse de 2 ATP

Bilan pour 1 palmityl CoA

 $(31 \times 3) + 15 \times 2 + 8 = 93 + 30 + 8 = 131$ équivalents ATP

Or l'activation de l'AG consomme 2 équivalents ATP

 $AG + ATP + CoASH \rightarrow acylCoA + AMP + PPi$

AcylCoA synthétase

et PPi + H2O -> 2Pi (pyrophosphatase inorganique)

Bilan pour 1 mole de palmitate : 129 ATP

2.4. (3 pts) Cas de jeûne glucidique

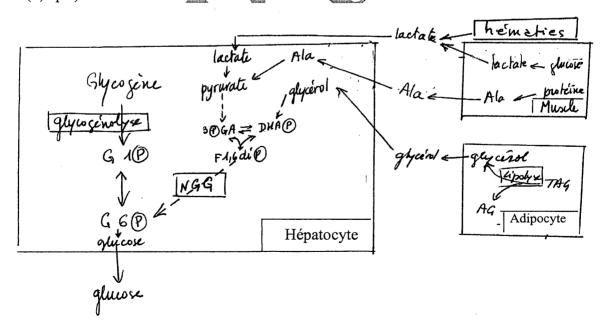
Orientation métabolique majeure des acétyl-coA: cétogénèse

Composés formés:

Acide Acétoacétique CH3-CO-CH2-COOH

Acide ß hydroxybutyrique CH3-CHOH-CH2-COOH

Acétone: CH3-CO-CH3 éliminé


Rôle de ces composés:

Utilisés par les tissus périphériques comme substrats énergétiques de substitution au glucose

en cas de déficit glucidique.

3. Le foie, organe producteur de glucose.

3.1. (4,5 pts)

3.3. (1,5 pt)

Glucagon

cellules a des îlots de Langerhans du pancréas endocrine

Adrénaline

médullosurrénale cortico-surrénale

Cortisol cortico-surrénale

4. Le foie synthétise une grande partie des protéines plasmatiques

4.1.(3,5 pts) Electrophorèse

Situer les différentes protéines plasmatiques sur le protéinogramme.

Pôle + albumine / α 1 globuline / α 2 globulines / β globulines / γ globulines Pôle -

Justification de la migration électrophorétique Séparation selon la charge et selon la masse :

- charge protéine dépend du pH : pH < pHi prot# migre vers cathode

pH > pHi prot-migre vers anode

pH = pHi pas de migration

Dans conditions de l'analyse : * pH = 8,6 > pHi des protéines plasmatiques

toutes sont des anions et se déplacent vers l'anode

* migration d'autant plus rapide que leur pHi est éloigné du pH = 8,6

- Mobilité électrophorétique diminue avec la masse molaire de la protéine à ptti identique.
- 4.2. (1,5 pt)Chute de la pression oncotique modifie les échanges entre sang des capillaires et liquide interstitiel entraînant des oedèmes.

5. Le foie et le cholestérol

5.1.

- Formes sous lesquelles le cholestérol arrive au foie Résidus de chylomicrons intestinaux en période post-prandiale LDL

HDL qui ramène au foie le C des tissus

- Nom du précurseur : acétyl CoA
- 5.2. Rôle du cholestérol dans l'organisme.

Rôle structural dans les membranes

Rôle biologique : - précurseur de stéroïdes actifs :

hormones sexuelles ; minéralocorticoïdes (aldostérone) ;

glucocorticoïdes (cortisol);

vitamine D3 endogène.

- précurseur des acides biliaires

5.3. – (4 pts) Structure d'une VLDL:

5.3.1. Lipoprotéine – complexes molécules sphériques

Enveloppe – moléculaires hydrophiles ou amphiphiles

- phospholipides - protéines (Apo) - cholestérol

Centre

molécules hydrophobes

Triglycérides Cholestérol estérifié

Les lipoprotéines permettent le transport des lipides hydrophobes dans le plasma (TAG, cholestérol).

- 5.3.2. Le foie exporte les TAG et le cholestérol dans les VLDL.
 - Les VLDL, après avoir cédé les TAG, se transforment en IDL puis en LDL; le cholestérol des LDL est destiné aux tissus périphériques et au foie.
 - Les **HDL** sont des lipoprotéines capables de fixer le cholestérol en excès et de le ramener vers le foie.
 - Le choles ltérol absorbé lors de la digestion arrive au foie sous forme de résidus de **chylomicrons**.

5.4. (4 pts)

- sels biliaires
- Rôle de la bile dans la digestion

SB: Molécules amphiphiles à rôle tensioactif. Permettent l'émulsification des lipides nécessaire à l'action de la lipase pancréatique. Formation de micelles stables pour l'absorption.

- Modalité et contrôle de l'excrétion biliaire.

Synthèse continue mais excrétion seulement au moment du repas par contraction de la vésicule biliaire et ouverture du sphincter d'Oddi.

Contrôle:

- CCK : hormone gastro-intestinale sécrétée (cellules I) quand petits peptides aa et AG dans lé duodénum

Stimule la contraction de la vésicule biliaire et relâchement du sphincter d'Oddi.

Parasympathique : stimule la contraction de la vésicule.

BAREME

- 1. 5 points 0,25 par légende (× 16) 1 pour le sens des liquides
- 2. 10 points
 - 2.1. 3 points 2.2. 1 point

 - 2.3. 3 points 2.4. 3 points
- 3. 8 points
 - 3.1. 4,5 points
 - 3.2. 2 points
 - 3.3. 1,5 point
- 4. 5 points
 - 4.1. 3,5 points
 - 4.2. 1,5 point
- 5. 12 points
 - 5.1. 2 points 5.2. 2 points

 - 5.3. 4 points 5.4. 4 points

